
Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

2 Cδ programming language: specification and goals

In this section, the desired feature set and design choices of Cδ will be

discussed. Cδ is a programming language which that extends the C♯ language

and transcompiles into it. This means that (unlike C♯) it does not compile into

the Common Intermediate Language (CIL) 1 but rather into C♯ code,. Tthus

passing the responsibility to compile into the CIL.

For the naming of this language, the character C of C♯ has been kept. The δ

(lowercase delta from the Greek alphabet) is a reference to the mathematical

model of deterministic finite-state machines. In the quintuple (∑︀,S,s0,δ,F) the δ

stands for the state-transition function which that decides the next state for

the given current state and input. This hints at the language paradigm that Cδ

supports. In places where the Unicode character δ is not supported, the

alternative notation C delta is used instead.

While this section shows what Cδ should have been, the section 6.2 Design

goals vs. final resultresults shows what it has become. In sSection 3 Cδ

programming language: implementation describes the developmental work

of Cδ is described.

2.1 Features

This subsection names and explains the planned feature set of the Cδ

transcompiler.

2.1.1 Finite-state machines

The main motivation for Cδ is offering programming language constructs to

create finite-state machines. Instead of writing highly complex

1 An object-oriented assembly language into which .NET languages are compiled. This

language will be compiled into executable machine code in the final step. Its purpose is similar

to that of Java bytecode.

Commented [V1]: Active voice would be: This section
provides a discussion of ….

Commented [V2]: Earlier, you used bolding for
emphasis; here you use italics. Please check your style
guide(s) and be consistent.

Commented [V3]: Please check your style guide(s) for
instructions on whether to capitalise section when it
refers to a specific section.

Commented [V4]: Final result is redundant.

Formatted: Font color: Auto

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

implementations, the developer can define state machines in Cδ by naming

the available states and linking these with transitions. It is the Cδ

transcompiler’s responsibility to create valid C♯ code for the given state

machine definition.

Determinism in Cδ

A finite-state machine defined in Cδ must follow the rule δ → Q × Σ → Q. This

means that every transition δ (in the context of current state q ∈ Q and current

input a ∈∑︀) must have one single target state q ∈ Q. Even so, the finite-state

machines in Cδ are not considered deterministic.

There are two reasons why determinism cannot be promised with Cδ:

1. Single target state rule is not enforced

Defining a transition in Cδ allows one single source state and target

state for a given condition only. However, there are no safety checks

that multiple transitions are defining the same condition and same

source state but with different target states.

At compile-time 2 it is not possible to parse conditions and check if

whether they are equal. That is because there are unlimited

possibilities to write two conditions with different implementations

which that evaluate to the same result. For example, these two Cδ

condition blocks condition

{ return true; } and condition { return getTrueValue(); } might evaluate to the

same but cannot be detected at compile-time.

2 This describes the timespan in which the compiler translates the code and does static analysis

in the search for issues.

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

The translated Cδ code does not check for it And at runtime-time3 the

translated Cδ code does not check for it either. Ideally, the state

machine would iterate through each available transition and check for

their conditions. When multiple transitions evaluate to be true, then an

error should halt the program as the determinism rule was broken. Cδ

will not check for this at runtime-time and choose the first transition

elevating to true instead. This decision for lazyevaluation was made

because each evaluation costs computing time. And in cConsideration

ing between formal definition check and performance, the latter was

preferred. Future versions of the Cδ transcompiler might change this

behaviour.

2. Programming can cause non-deterministic results. While a

developer would try to write code for deterministic results, there are

multiple ways to break this behaviour. C♯ allows the developer to write

concurrent code but Cδ is not implemented to be thread-safe 4 yet.

Reflection5 can be used to break into the private fields and methods of

the state machine and thus circumvent safety checks.

In summary, the finite-state machines in Cδ cannot be considered

deterministic. But they are not called non-deterministic, either, because this

implies multiple target states would be allowed,. And thiswhich is prohibited

in Cδ by definition (even if not enforced).

For this reason, the finite-state machines in Cδ remain untyped and

mentioning the determinism is avoided.

3 This dDescribes the timespan in which the translated programme is running.

4 A C] component is considered thread-safe when multiple threads can access this component

without causing race conditions.[Mic16b]
5 GThis gives C] code the ability to examine and modify its own code at runtime-time.[Mic15]

Commented [V5]: Does this change your meaning?

Commented [V6]: You formatted this differently from
#1 above. Please choose and be consistent.

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

State machine example and Cδ pseudocode

To showcase the language extensions introduced by Cδ, we consider the

following example: we want to write a console application which that checks

if whether a given sequence of characters is in lower camel case notation.

For the purpose ofFor this example, we define camel case as a notation in

which multiple words are concatenated without blank spaces in between.

Each word in the characters sequence must start with a capital letter. No two

capital letters can be next to each other and the last character has tomust be

lower case. An empty sequence is not accepted.

The lower camel case uses the above rules with the distinction, that the first

word7 in the sequence must start with an lower character. To further simplify

the example, we only work with the Latin alphabet and do not accept any

other characters (e.g., digits). These are accepted sequences:

∙ cat

∙ dogOwner

∙ lowerCamelCase

The following sequences are not accepted:

∙ Cat

∙ CamelCase

∙ favoriteDVD9

For the detection of lower camel case, this regular expression [Aho90] can be

used:

[a-z]([A-Z]?[a-z])*

Commented [V7]: I can’t put a comment in the
footnotes. Here and in several places, you refer to C]. Do
you mean C#? Please check footnotes throughout and
correct if needed.

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

And tThis regular expression could be easily implemented in C♯ using the

Regex[Mic16a] class included in the Base Class Library. But this approach will

only return true if a match in the given sequence was found or not. The

developer cannot intervene with the reading process and, e.g., in what context

or /at which character the matching failed.

Regular expressions are notations for regular languages. The Chomsky hierarchy

classifies this as a type-3 grammar.[Cho59] Type-3 grammars can be

7In this context, word means a segment in the sequence. E.g., goodExample consists of the

words good and Example.
8The small epsilon denotes an empty sequence. There are no characters in this sequence.
9Note that the suffix DVD are is three capital letters in a row. This is not accepted.

detected with finite-state machines (both deterministic and non-deterministic).

This is the where the Cδ language will be used for this example.

The following state machine diagram (Figure 1) detects the lower camel case

notation and is equivalent to the regular expression from above. A given

sequence is accepted, when the state machine halts in a final state (which is

Lower Char in this machine). Halting in a normal state will reject the given

sequence. If none of the available transitions can be traversed, then we

consider the sequence rejected.

Commented [V8]: Does this change your meaning?
https://www.scribbr.com/academic-writing/transition-
words-phrases-list-misuses/

Commented [V9]: Shouldn’t these be footnotes?

https://www.scribbr.com/academic-writing/transition-words-phrases-list-misuses/
https://www.scribbr.com/academic-writing/transition-words-phrases-list-misuses/

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

Figure 1: A finite-state machine detecting strings in lower camel case.

With the first state, Init, it is enforced that an empty sequence will not be

accepted. The transition labels isLower and isUpper represent either lower

case or capital characters. The states Lower Char and Upper Char ensure the

other rules stated before.

This example state machine will now be defined in the Cδ language. The

following code is a mix of Cδ code and C♯ pseudo code. The latter is done to

focus on the new Cδ language features and to reduce the overall needed space

in this thesis.

Basic finite-state machine definition in Cδ

1
2

public automaton<char> LowerCamelCaseMachine
{

Init
Lower
Char

Upper
Char

start isLower isUpper

isLower

isLower

Commented [V10]: Does this change your meaning?

Commented [V11]: Are what?

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

3
4

Listing 1: Cδ pseudocode for detection of lower camel case.

In the first line, an optional access modifier6 (public) is used. It is followed by

the new Cδ keyword automaton. This tells the Cδ transcompiler that the next

code block, which is marked with the curly brackets { and }, defines a finite-

state machine. A C♯ compiler would fail at this point and state, that automaton

is not a valid keyword.

After automaton an optional data type (char) can be given. This tells the Cδ

transcompiler which data type will be used to match a transition. By uUsing

the data type char in this example, it is ensuresd that only characters can be

passed to this state machine for execution. Omitting the data type tells the Cδ

transcompiler to use object instead, which forces the transitions to type-

check themselves.

6 C] uses the object-oriented programming paradigm and thus has the concept of

encapsulation. State machines defined in Cδ are translated into normal classes in C]. The access

modifiers in Cδ work exactly like as they do in C].

// a v a i l a b l e s t a t e s

start state Init; state

UpperChar;

end state LowerChar;

// a v a i l a b l e t r a n s i t i o n s

transition Init LowerChar

{ return char.IsLower(value); } transition

LowerChar LowerChar

{ return char.IsLower(value); } transition

LowerChar UpperChar

{ return char.IsUpper(value); } transition

UpperChar LowerChar

{ return char.IsLower(value); }
}

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

This feature resembles the input alphabet for state machines, transferred and

applied to data types in this programming language.

LowerCamelCaseMachine gives the Cδ state machine a name, just like as

classes are named in C♯.

In lines 3 and 8, the C♯ syntax for source code comments are is used. These

are ignored by the Cδ transcompiler and used to group the next statements

visually.

Lines 4-6 define the available states in this state machine. A state in Cδ is

defined by the keyword state, followed by a name and a semicolon. State

machines in Cδ must have exactly one initial state but can have any number

of final states (even zero). It is possible to define a state being both initial and

final. Each state must be named uniquely and only a finite count of states can

be defined.

In this example, the initial state Init, the final state LowerChar and the state

UpperChar are defined. Cδ introduces the keywords start and end7to qualify

the type of a state.

With lines 9-16, the available transitions are defined in this state machine. A

transition is defined with the keyword transition, a source state, a target state

and a code block. The source/target state must match with the defined states.

The order in which states and transitions are defined does not matter.

Transitions can may reference states that are defined in subsequent source

code lines. The code block must return a boolean Boolean, which decides, if

whether the transition will be used for the given input. The input is a

parameter named value and has the data type which that was defined in line

1. The rules for the transition code block are the same as for methods in C♯.

7 The keyword end was chosen as an easy to remember counterpart to start. It qualifies the

following state as a final state (also called accepting state),. Nnot to be confused with the state

on which the state machine ends (which can be final or not).

Commented [V12]: Generally, a paragraph should be
more than one sentence.

Commented [V13]: See comment about / above—here
and throughout.

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

In this example, the four transitions are defined just likeas they are in the state

machine diagram (Figure 1). The statements char.IsLower and char.IsUpper

are C♯ pseudo code, which takes a single character and return whether it is

lowercase or /capitaliszed.

The above source code (Listing 1) is enough to create a state machine which

that checks for lower camel case notation. Before showing the usage of this

state machine, however, more powerful constructs will be introduced. Next,

the definition of code blocks for entering and leaving states will be shown.

Entry and exit code blocks for states in Cδ

1
2

public automaton<char> LowerCamelCaseMachine
{

// a v a i l a b l e s t a t e s

start state Init

{

entry { WriteLine("State machine started"); }

exit { WriteLine("First lower-case char read"); }
} state UpperChar

{

entry { WriteLine("Last char was lower -case"); }
}
end state LowerChar
{

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

15
27

Listing 2: Extended Cδ pseudocode for executed statements when entering or

leaving states.

This time, the definition of states has been extended by code blocks. The

lLines 4-16 still define the same states as in the previous code (Listing 1). Now

a state in Cδ can be followed by curly brackets (the semicolon is omitted).

Within these brackets an entry code block, an exit code block or both can be

defined. The keywords entry and exit define the type of its following C♯ code

block.

The state Init has both a code block for when this state is entered and one for

when it is exited. WriteLine is pseudo method to print output into the console

application. It is used here to help the user trace in which state the state

machine is currently in. Any other C♯ code could be put in here as well. The

states UpperChar and LowerChar define an entry code block only.

entry { WriteLine("Last char was
}

// a v a i l a b l e t r a n s i t i o n s transition

Init LowerChar

lower -case"); }

{ return char.IsLower(value); }

transition LowerChar LowerChar

{ return char.IsLower(value); }

transition LowerChar UpperChar

{ return char.IsUpper(value); }

transition UpperChar LowerChar

{ return
}

char.IsLower(value); }

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

In Cδ, states can be defined with optional entry and exit code blocks. There

can only be one entry and one exit block or only one of them or neither of

them. The next step is to allow code execution when transitions are traversed.

Traversal code blocks for transitions in Cδ

1
2

public automaton<char> LowerCamelCaseMachine
{

// a v a i l a b l e s t a t e s

start state Init

{

entry { WriteLine("State machine started"); }

exit { WriteLine("First lower -case char read"); }
} state UpperChar

{

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

11
12

Listing 3: Further extended Cδ pseudocode for executing statements when

traversing transitions.

Code execution can also be done while traversing transitions, too. Cδ allows

to extending a transition with a code block which that is executed whenever

the state machine decides to use this transition. In this example, the user will

be informed which kind of character was read when switching between the

states LowerChar and UpperChar.

entry { WriteLine("Last char was upper case-case"); }
}
end state LowerChar
{

entry { WriteLine("Last char was lower -case"); }
}

// a v a i l a b l e t r a n s i t i o n s transition

Init LowerChar

{ return char.IsLower(value); } transition LowerChar

LowerChar

{ return char.IsLower(value); } transition LowerChar

UpperChar

{
condition { return char.IsUpper(value); } entry {

WriteLine("Read upper-case char"); }

}

transition UpperChar LowerChar
{

condition { return char.IsLower(value); } entry {

WriteLine("Read lower -case char"); }

}
}

Commented [V14]: Here and throughout, check
placement for your captions.

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

To differentiate between the traverse condition code block and the statements

to execute when traversed code block, the keywords condition and entry are

used. The order in which the statements are executed is as follows:

1. exit code block of the current state

2. entry code block of the traversed transition

3. entry code block of the reached state

Using the state machine in a console application

Now the defined finite-state machine will be used in a sample console

application. The idea is to write C♯ code which that iterates through a

sequence of characters and puts each character one by one into the state

machine. After that, the status of the state machine is checked. Depending on

the results (e.g., the state machine accepts) the user is informed.

Commented [V15]: Good use of a numbered list. The
rule for lists is to use a numbered list when the order of
the list items matters and use a bulleted list when the
order does not matter. Good job.

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

1
2

Listing 4: A console application written in C♯ pseudocode. The state machine

LowerCamelCaseMachine (written in Cδ) is used.

No detailed explanation will be given for this C♯ pseudo code (Listing 4). The

defined state machine LowerCamelCaseMachine is instantiated initiated like

any other object in C♯. Line 5 creates a constant sequence of characters, which

public static void Main(string[] args)
{

const string textToCheck = "thisIsCamelCase"; var myMachine = new

LowerCamelCaseMachine();

foreach (char letter in textToCheck)
{ myMachine.Invoke(letter);
}

if (myMachine.IsEndState)
{

WriteLine("Text is in lower camel case!");
} else
{

WriteLine("Text is NOT in lower camel case!");

if (myMacine.CurrentState == "UpperChar")
{

WriteLine("Text has multiple upper-case letters in a row or ended with

upper-case.");

}

 else if (myMacine.CurrentState == "Init")
{

WriteLine("Text is empty or started with upper case.");
}

}
}

Commented [V16]: Is this what you mean?

Vangie Stice-Israel
ACADEMIC ESL EDITING SAMPLE—TECHNOLOGY

5-star review:

I am very satisfied with the work of Vangie. He or she put really

much effort into finding my mistakes and even found the best

hidden ones. I even learned a lot when I transfered the suggestions

back into my original document. Vangie's comments helped me to

understand WHY something was wrong and how to improve from

there. The delivery date was also sooner than expected. Great!

the state machine will read by the state machine. In lines 6-7 the application

iterates through the constant and puts each character into the state machine.

This is done with the method Invoke. This method takes an argument as input

and changes the current state accordingly. Code blocks defined for transitions

and states will be executed. In this case, the user would be informed about the

evaluation process defined in the state machine source code (Listing 3).

Finally, the application checks on the status of the state machine. If the state

machine halted in a final state (IsEndState), then a success message is printed

into the console. Otherwise, the state machine halted in a non-final state or

failed to find a suitable transition. This means that the sequence was rejected.

Additional information can be read, such as like which state is the current

state. With this, more precise messages can be printed. E.g.For example, if the

state machine has not accepted and the current state is Init, then the sequence

input must either have been empty or started with anything but a lowercase

character.

This elaborate example shows how finite-state machines can be defined in Cδ.

The presented constructs presented are the basic feature set implemented in

the Cδ transcompiler and not a comprehensive feature list. A detailed

enumeration of the final feature set is discussed in the section 3, Cδ

programming language: implementation.

Commented [V17]: Since it’s the beginning of a
sentence

